A CubeSat-based Minimal Interstellar Mission

Introduction

CubeSats for interplanetary missions

- Mars Cube One, Lunar Flashlight, and NEA Scout.

Is a CubeSat-based Solar System escape mission feasible?

Potential targets

- Kupier belt objects (> 30 AU)
- Interstellar objects (11° Oumuamua)
- Planet Nine (200 – 1200 AU)
- Other stars (> 268,000 AU)

Why a CubeSat?

- Availability of off-the-shelf technologies for deep space missions in the future
- Low mass: launch as secondary payload, low launch cost, multiple spacecraft

Science Objectives

1. Determine properties of the interstellar medium
2. Determine properties of the heliopause
3. In-situ observations of minor bodies (interstellar asteroids / comets, Kupier belt objects) and planets (Planet Nine)
4. In-situ analysis of ejecta of minor bodies (interstellar asteroids / comets, Kupier belt objects)

Key Technologies

Propulsion

- Advanced solar sail
- Electric sail

Power

- Technology: Solar system hyperbolic escape (AU/a) vs trip duration [years]
- Specific power Potential
 - RTG: 2.3–2.6 W/kg Specific power marginal
 - Alphavoltaics: 0.33 W/kg Specific power too low
 - Betavoltaics: Too heavy; too short half-life of Tritium / Promethium-147
 - CubeSat Nuclear D-cell battery (Thermophotovoltaics): 12-16 W/kg Acceptable specific power
 - Microbial battery: Insufficient stability

Thermophotovoltaics seems to be the most promising technology for deep space CubeSat missions

Communication

- Transponder: (JPL Iris deep space transponder: 0.5 W, 1.2 kg, 26 W)
- Optical communication: (further miniaturization of existing technologies required, e.g. JPL 1U optical com system)

Performance of existing CubeSat optical communication technologies requires improvement (pointing accuracy, single-photon detectors)

Sample Mission Concepts

Obertmann maneuver 1: Jupiter-Solar Obertmann maneuver

- Mission phases:
 1. Earth escape trajectory to Jupiter
 2. Flyby at Jupiter
 3. Solar approach trajectory
 4. Boost at Perihelion
 5. Solar system escape trajectory

Obertmann maneuver 2: Starshot prototype laser infrastructure

- Mission phases:
 1. Geostationary or highly elliptic orbit
 2. Laser boost
 3. Solar approach trajectory
 4. Boost at perihelion
 5. Solar system escape trajectory

Conclusions

- CubeSat solar system escape missions are likely feasible in the next 10-20 years
- Key technologies are currently under development for interplanetary CubeSat missions
- Key technologies require further performance increase: optical communication, advanced laser sails, power generation, miniaturized science instruments (impactor), CubeSat-sized heat shield for solar Obertmann maneuver

References