Nanospacecraft design and mission overview for statistical asteroid prospecting

May 30, 2018
7th Interplanetary CubeSat workshop
Paris, France

Iaroslav Iakubivskyi et.al.
Small neighbors

- 755,000+ known asteroids + constantly increasing
- ≈508,000 numbered asteroids + constantly increasing
- 138,000+ with known size and albedo + 350,000 by Gaia
- ≈4,000 with known taxonomic class + 100,000s by Gaia and Euclid
- 12 studied by space missions
- +10 more with launched and developed missions
Small neighbors

- 755,000+ known asteroids + constantly increasing
- ≈508,000 numbered asteroids + constantly increasing
- 138,000+ with known size and albedo + 350,000 by Gaia
- ≈4,000 with known taxonomic class + 100,000s by Gaia and Euclid
- 12 studied by space missions
- +10 more with launched and developed missions
Small neighbors

- 755,000+ known asteroids + constantly increasing
- ≈508,000 numbered asteroids + constantly increasing
- 138,000+ with known size and albedo + 350,000 by Gaia
- ≈4,000 with known taxonomic class + 100,000s by Gaia and Euclid
- 12 studied by space missions
- +10 more with launched and developed missions
Asteroid touring

CASTAway to visit 10—20 asteroids
(University of Oxford, Open University)

MANTIS to visit ~10 asteroids
(Johns Hopkins University Applied Physics Laboratory)

Lucy to six asteroids (NASA)
Science objectives

- Spectral types/complexes not visited thus far
- Primordial/rubble piles
- Various sizes
- Various families
- Active asteroids/main-belt comets
- Known and unknown (contact) binaries/multiple asteroid systems
- Potentially hazardous asteroids
- Mapping of hydration features
- Selection and mapping of potential sample return targets and sites
Multi-asteroid touring

- Hundreds of asteroids
- Tens of nanospacecraft
- No mothership
Multi-asteroid touring

- Hundreds of asteroids
- Tens of nanospacecraft
- No mothership

- Propulsion
- Communications
- Navigation
- Autonomy...
Photonic sail
Example: NEA Scout (NASA)

Electric propulsion
Example: M–ARGO (ESA)
Photonic sail
Example: NEA Scout (NASA)

Electric propulsion
Example: M–ARGO (ESA)

Thrust decays as $1/r^2$
Electric solar wind sail
Electric solar wind sail

Thrust decays as $1/r^{7/6} \approx 1/r$
3.2-year asteroid tour, \(a_{0}=1 \text{ mm/s}^2 \)
Earth \(DV=5.93 \text{ km/s} \) @ 1498 km, \(max(r)=2.744 \text{ au} \), \(dv_{tot}=31.8 \text{ km/s} \), \(dv_{scf}=13.6 \text{ km/s} \).

8.3-year asteroid tour, \(a_{0}=0.989 \text{ mm/s}^2 \)
Earth \(DV=12.4 \text{ km/s} \) @ 59491 km, \(max(r)=5.332 \text{ au} \), \(dv_{tot}=55.9 \text{ km/s} \), \(dv_{scf}=17.6 \text{ km/s} \).
Mission requirements 1/2

• Marginal escape orbit
• Acquire heliocentric orbit
• Four year lifetime
• Perform 20—40 flybys of primary targets (by the whole fleet)
• Maximize the number of primary targets per spacecraft
• Maximize the time at target’s proximity
• Maximize the number of secondary flybys
• Locate targets
• If needed, perform relative orbital corrections
• Take NUV-VIS-NIR measurements
Mission requirements 2/2

- Maximize the illuminated surface coverage
- Image the whole surface in low resolution while approaching
- Take hi-res images during flyby
- Different phase angles of active asteroids
- Store scientific data
- Flyby Earth
- Transmit science data during Earth flyby
- Transmit telemetry throughout the mission
Spacecraft requirements 1/2

- Mass <6 kg, fits in six-unit CubeSat form factor
- 50 W of instant power and 14 W of continuous
- Deploy 20-km tether
- Charge the tether up to nominal/peak voltage of 15/30 kV
- Absolute attitude knowledge/control: ~0.1/1°
- Absolute position knowledge/control: ~150/500 km
- Radiation dose: 10⁴-10⁵ rad
- Internal temperature: +10 .. +15° C
- Storage data rate: 50 MB/s
- Storage capacity: 50 GB
Spacecraft requirements 2/2

- Relative attitude knowledge/control: \(~0.1/1'\)
- Relative attitude control stability: \(~0.1'/s\)
- Slew rate: \(3^\circ/s\)
- Relative position knowledge/control: \(~50/100\ \text{km}\)
- Telemetry: 1—60 bit/s
- Design spacecraft for bulk production
- Minimize production expenses
1. Launch;
2. Deploy the tether;
3. Accelerate with E-sail;
4. Perform multiple flybys (iterate through sub-phases):
 (a) Cruise;
 (b) Locate the target;
 (c) Perform relative navigation by determining the relative position with respect to the target and controlling the trajectory to acquire the required flyby distance;
 (d) Track the object and acquire low-resolution measurements while approaching the target. Prepare for close approach. If power budget allows, send telemetry updates;
 (e) Perform fast tracking and acquire high-resolution measurements during close approach;
 (f) Track the object and acquire low-resolution measurements while descending the target. Store data;
 (g) Send telemetry updates.
5. Transmit data during the Earth flyby.
• 0.3–0.9 \(\mu\)m hi-res imaging
 • 2–5 m/px at 100 km
• 1–5 \(\mu\)m infrared imaging
 • 5–25 m/px at 100 km
<table>
<thead>
<tr>
<th>Component</th>
<th>Mass/g</th>
<th>Count</th>
<th>Total mass/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacecraft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bus PCB</td>
<td>75</td>
<td>4</td>
<td>300</td>
</tr>
<tr>
<td>Battery</td>
<td>80</td>
<td>4</td>
<td>320</td>
</tr>
<tr>
<td>Battery PCB</td>
<td>40</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>RW200-15</td>
<td>21</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>RW-0.01</td>
<td>120</td>
<td>2</td>
<td>240</td>
</tr>
<tr>
<td>Sun sensor</td>
<td>5</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>Patch antenna</td>
<td>64</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Dipole antenna</td>
<td>100</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>HV source PCB</td>
<td>75</td>
<td>1</td>
<td>75</td>
</tr>
<tr>
<td>HV shielding</td>
<td>23</td>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td>TILE 50</td>
<td>55</td>
<td>5</td>
<td>275</td>
</tr>
<tr>
<td>Deployable panels</td>
<td>102</td>
<td>4</td>
<td>408</td>
</tr>
<tr>
<td>Hinges</td>
<td>5</td>
<td>16</td>
<td>80</td>
</tr>
<tr>
<td>U-frame</td>
<td>184</td>
<td>2</td>
<td>368</td>
</tr>
<tr>
<td>Side panels</td>
<td>62</td>
<td>5</td>
<td>310</td>
</tr>
<tr>
<td>Bus structure</td>
<td>182</td>
<td>1</td>
<td>182</td>
</tr>
<tr>
<td>AOC structure</td>
<td>112</td>
<td>1</td>
<td>112</td>
</tr>
<tr>
<td>Screws, nuts, inserts</td>
<td>100</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Telescope</td>
<td>850</td>
<td>1</td>
<td>850</td>
</tr>
<tr>
<td>Framing camera</td>
<td>150</td>
<td>1</td>
<td>150</td>
</tr>
<tr>
<td>Total for spacecraft</td>
<td></td>
<td></td>
<td>4088</td>
</tr>
<tr>
<td>Remote unit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB</td>
<td>50</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>Communications chip</td>
<td>30</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>Reel and motor</td>
<td>150</td>
<td>1</td>
<td>150</td>
</tr>
<tr>
<td>TILE 50</td>
<td>60</td>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>Deployable panels</td>
<td>42</td>
<td>2</td>
<td>84</td>
</tr>
<tr>
<td>Battery</td>
<td>38</td>
<td>1</td>
<td>38</td>
</tr>
<tr>
<td>Structure</td>
<td>140</td>
<td>1</td>
<td>140</td>
</tr>
<tr>
<td>Total for remote unit</td>
<td></td>
<td></td>
<td>662</td>
</tr>
<tr>
<td>Tether (20 km)</td>
<td>200</td>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>Total for spacecraft, remote unit and tether</td>
<td></td>
<td></td>
<td>4950</td>
</tr>
<tr>
<td>Total with 20% margin</td>
<td></td>
<td></td>
<td>5940</td>
</tr>
</tbody>
</table>
Temperature outside
Temperature inside
Surface emissivity

Infrared Emissivity

- 0.89000
- 0.83563
- 0.78126
- 0.72688
- 0.67250
- 0.61813
- 0.56375
- 0.50938
- 0.45500
- 0.40062
- 0.34625
- 0.29187
- 0.23750
- 0.18312
- 0.12874
- 0.07437
- 0.02000
Solar absorptivity
Thermo-optical properties outside
Thermo-optical properties inside
Back to home planet (unsolved)
Radiation shielding (Dong L. et al, 2014)

<table>
<thead>
<tr>
<th>Material</th>
<th>10 (MeV)</th>
<th>1 (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFRP</td>
<td>0.046670</td>
<td>0.002181</td>
</tr>
<tr>
<td>GFRP</td>
<td>0.043640</td>
<td>0.002098</td>
</tr>
<tr>
<td>Kevlar</td>
<td>0.043370</td>
<td>0.002058</td>
</tr>
<tr>
<td>Glass</td>
<td>0.037310</td>
<td>0.001880</td>
</tr>
<tr>
<td>CFRM</td>
<td>0.037080</td>
<td>0.001837</td>
</tr>
<tr>
<td>BFRM</td>
<td>0.036210</td>
<td>0.001779</td>
</tr>
<tr>
<td>Magnesium alloys</td>
<td>0.035580</td>
<td>0.001769</td>
</tr>
<tr>
<td>Aluminum alloys</td>
<td>0.033880</td>
<td>0.001746</td>
</tr>
<tr>
<td>Titanium alloys</td>
<td>0.030430</td>
<td>0.001630</td>
</tr>
<tr>
<td>Steel</td>
<td>0.028760</td>
<td>0.001576</td>
</tr>
</tbody>
</table>
Conclusions

• Flyby hundreds of asteroids with tens of nanospacecraft
• Enabled by electric sail
• Needs full trajectory analysis
• Minimal use of DSN by returning data to Earth proximity
• Optical navigation and spacecraft autonomy
• Similar instrumentation is used in LEO
• Study at ESA’s Concurrent Design Facility
• Other applications
• *Fly Early & Fly Often*
Conclusions

• Flyby hundreds of asteroids with tens of nanospacecraft
• Enabled by electric sail
• Needs full trajectory analysis
• Minimal use of DSN by returning data to Earth proximity
• Optical navigation and spacecraft autonomy
• Similar instrumentation is used in LEO
• Study at ESA’s Concurrent Design Facility
• Other applications
• *Fly Early & Fly Often*
Conclusions

• Flyby hundreds of asteroids with tens of nanospacecraft
• Enabled by electric sail
• Needs full trajectory analysis
• Minimal use of DSN by returning data to Earth proximity
• Optical navigation and spacecraft autonomy
• Similar instrumentation is used in LEO
• Study at ESA’s Concurrent Design Facility
• Other applications
• *Fly Early & Fly Often*
Contributing authors of original “Multi-Asteroid Touring” mission proposed for ESA’s Call for “New Science Ideas”:
Pekka Janhunen, Petri Toivanen, Jouni Envall, Liisa Juusola (Finnish Meteorological Institute), Karri Muinonen, Antti Penttilä, Mikael Granvik, Tomas Kohout, Maria Gritsevich (University of Helsinki), Kai Viherkanto, Antti Näsilä (VTT Technical Research Centre of Finland), Rami Vainio (University of Turku), Andris Slavinskis (Tartu Observatory)

Iaroslav Iakubivskyi (UT), Andris Slavinskis (TO/Ames), Pekka Janhunen, Petri Toivanen (FMI), Karri Muinonen, Antti Penttilä, Mikael Granvik, Tomas Kohout, Maria Gritsevich (UH), Mihkel Pajusalu (MIT/TO), David Mauro, Jan Stupl (Ames), Indrek Sünter, Hendrik Ehrapais, Jānis Dalbiņš, Erik Ilbis, Tõnis Eenmäe (TO/ESTCube), William F. Bottke (Southwest Research Institute), Andrew S. Rivkin (Johns Hopkins University Applied Physics Laboratory)