The CASTAway mission

CubeSat possibilities in the asteroid belt

Colin Snodgrass
The Open University, UK
The mineralogy of the asteroid belt

How do we link meteorites to individual asteroids, and therefore mineralogy to broad distributions, and finally use this to understand solar system formation & evolution?
Planet formation and asteroids

- Small bodies are left over from planet forming process
- They preserve, to some degree, the composition of the location in the disc where they formed
- We now see a mix of types, possibly due to stirring of the disc during planet migration

DeMeo & Carry 2014, Nature
Asteroid spectroscopy

• Approx 4500 asteroids with spectra so far (7\times10^5 known)
 – Mostly visible only
 – Few hundred NIR < 2.5 \mu m
 – Few 10s NIR \sim 3 \mu m
• Important features in NIR, especially \sim 3 \mu m
• Earth’s atmosphere & faintness of small asteroids limits progress
• Big surveys coming:
 – Gaia, \sim 3\times10^5 vis spectra
 – LSST, \sim 5\times10^6 vis photometry
• Big telescopes coming:
 – E-ELT, JWST: NIR spectra of \sim km ones, but only of a few
Questions in 2030s

• How do compositions vary across asteroid size; within the same taxonomic classes, families or pairs; with apparent surface age; and across different geomorphology on resolved surfaces?

• How do surface compositions relate to meteorite types (mineralogical classification)?

• How do mega-surveys correlate with composition determined over the 0.3-5 μm range?

• What is the evidence for different degrees of heating in different regions of the early Solar System?

• Is our understanding of surface ages correct? What is the typical size distribution of craters and of small impactors?

• How do surfaces vary with size, shape and spin rate; with the presence or absence of satellites; across different dynamical environments?
The CASTAway mission

• Three key measurements in one simple spacecraft
 – 0.3-5 μm survey of >10,000 asteroids of all sizes, types
 – Spatially resolved imaging & spectroscopy in close flybys of >10 asteroids of a variety of types
 – Discovery of very small asteroids (1-10m diameter)

• Spacecraft is a small space telescope (50cm) that loops through the asteroid belt
 – Main telescope with NIR spectrograph + vis. imager
 – Thermal IR camera for flybys
 – Small asteroid discovery with star-tracker type cameras

• Proposed for ESA M5 opportunity, launch ~2029
CASTAway instruments

• Spectrograph:
 – 1 degree long slit
 – 0.6-5 μm, single detector (JWST NIRspec Teledyne type)
 – Stare mode in survey, pushbroom mode in flyby
 – V=15 limit (S/N~100 in 20min)

• Imager:
 – 1 deg FOV, 2″/pix = 10m @1000 km
 – 0.3-1 μm CCD
 – ugriz filters for survey
 – OH+UV cont for water search
 – Narrowband for flybys

• Thermal camera
 – 6-20 μm imager
 – Broadband for thermal properties + narrowband for mineralogy
 – Stand-alone instrument

• Asteroid detection cameras
 – Based on μASC star tracker cameras
 – 4x1.5 deg FOV, V=16 limit
 – Co-aligned with main telescope
 • Enables target-of-opportunity spectroscopy of ~1-10m size asteroids
 – Mature tech (tested on Juno)
CASTAway trajectory

- 7 year mission
- Gravity assist at Mars to raise perihelion distance, spend more time in asteroid belt
- 10 flybys in nominal trajectory
- One of many possible solutions
 - Search performed with limited database of 10,000 asteroids
- Optimisation to get a variety of types, sizes, spin-rates, dynamic groups, etc.
- With post-LSST catalogue, 10-20 flybys
CASTAway + CubeSats

• Proposal also lists ‘optional extras’ to consider in phase A:
 – Laser range finder to improve orbits for small asteroid discoveries
 – Polarimetry elements in camera for surface properties
 – Deployable probes based on CubeSats

• CubeSat option envisaged a competition to study a few options, similar to ESA AIM-COPINS
AIM COPINS

- AIM mission proposed to visit near-Earth asteroid Didymos as part of ESA/NASA asteroid deflection experiment
- Technology demonstration one of goals
- CubeSat Opportunity Payloads (COPINS) study of options for 2x 3U deployable probes
- Five proposals studied with ESA funding
- AIM not approved at ESA ministerial meeting 😞

- AGEX
 - Seismometers; structure and impact effects
- ASPECT
 - Visible/NIR spectrometer
- DustCube
 - Nephelometers (dust concentration in ejecta plume)
- CUBATA
 - Cameras, gravity field
- PALS
 - Magnetometer, volatile composition analyser, camera, vis spectrometer – detailed study of ejecta plume
CASTAway + CubeSats

• CASTAway designed to launch with Soyuz, but expect to use Ariane 6.2 in late 2020s
• Expected to have ~50% better performance
• Should have significant spare mass margin, which will become clearer as A6.2 performance better understood
• CubeSat launcher with N cubes can be imagined
• CubeSats relay data via CASTAway
 – Opportunity to use CubeSats in deep space
 – Probably each one relatively short-lived
CubeSat opportunities

• Release shortly before asteroid flybys
 – Much closer approach to asteroid without risking main spacecraft
 – Higher resolution views
 – Gravity field
 – Exosphere?
 – Magnetic fields?
 – (Sub-)surface science (landing/impacting)
 – Impact experiments?

• Release in survey mode
 – Stereo views (nearby asteroid discovery)
CubeSat challenges

• Fast fly-bys
 – Around 10 km/s relative velocity to asteroid
 – CA ~ 1000 km
 – Fly-by lasts ~hours
 – Asteroids 1-100 km diameter
 – Release of CubeSats days/weeks in advance? (tbc)

• Large distance from Earth (and Sun)
 – Comms only via CASTAway
 – Radiation environment

(1 – 100 km)

(~10 km/s)

(~2-3 AU)

(~1000 km)
CubeSat concepts

• Close approach
 – Aimed to just miss asteroid (<10 km)
 – Camera
 • close up views
 • Better than 10m/pix
 – Radio tracking / accelerometers
 • mass, gravity field
• Magnetometer?
 • Primordial magnetic field?
CubeSat concepts

- Impact
 - Penetrator science?
 - Material properties
 - Composition
 - Difficult! (10 >> 0.3 km/s)
 - Two cubes?
 - First is impactor, second watches / relays, transmits data, before also hitting / just missing
 - Cameras
 - Any other instruments?
 - Close up views, impact experiment (cratering, plume sampling...)

(not to scale)
CubeSat concepts

- **Survey mode**
 - Deep space operation
 - Stereo view with main spacecraft
 - Star-tracker type cameras
 - Parallax measurement for nearby small asteroids discovered
 - Better orbits, sizes, size distribution
 - Longer lived CubeSat

1 - 10 m

0.5°

~20,000 km

~200 km
CASTAway mission

• Simple spacecraft that investigates asteroid belt at all size ranges
 – Double number of visited asteroids in one mission
 – First large NIR spectroscopic survey
 • Real composition map and tie to meteorites
 – Discover and characterise very small asteroids
• Feasible for ESA M-class, or similar
 – Plenty of targets, with more choice available post LSST
 – Works with Soyuz-like performance of launcher, even better if A62 more capable (as expected)
 – High TRL spacecraft & payload components
 – Fits in cost cap with generous margins
• Can act as mother-ship for CubeSats
 – Significant mass margin probably available
 – Fast flybys – challenge is to find good experiments for short-lived CubeSat probes

 ESA didn’t select CASTAway for M5
 Concept will be back...

colin.snodgrass@open.ac.uk
Or.... Castalia

- Also proposed for M5, still in competition
- Rendezvous mission to a Main Belt Comet / active asteroid
- Remote sensing + in situ sampling payload (Rosetta-like)
- No lander in baseline, but simple/low mass lander would be a nice option to add
- Single target (133P), but in orbit
 - Low relative velocity (~0)
 - 6-12 months operation in orbit
 - 5-20 km altitude
BACKUP SLIDES
Survey performance

Flyby targets

Survey targets

Discovery targets

~few thousand asteroids in 1, 10, 100m bins

For Soyuz launch. If Arianne 62 performance OK, can get deeper into belt
Survey targets across mission
Active asteroids / MBCs

- Mass losing bodies in asteroid belt
- Cometary activity -> ice?
Castalia payload

Four packages, simple operations. One science team!

<table>
<thead>
<tr>
<th>Package</th>
<th>Instrument (Name, Purpose)</th>
<th>Mass (kg)</th>
<th>Power (W)</th>
<th>TRL</th>
<th>Pointing</th>
<th>Heritage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface remote sensing</td>
<td>MBCCAM Vis/NIR Imager</td>
<td>20</td>
<td>17-30</td>
<td>>5</td>
<td>Nadir, limb, dust</td>
<td>DAWN FC, Rosetta OSIRIS WAC</td>
</tr>
<tr>
<td></td>
<td>TMC Thermal IR Imager</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>Nadir, limb</td>
<td>UKTechDemoSat,</td>
</tr>
<tr>
<td>Interior</td>
<td>SOURCE Deep Radar</td>
<td>20.2</td>
<td>150</td>
<td>≥6</td>
<td>Nadir</td>
<td>MRO Sharad, MEx MARSIS, Rosetta CONSERT</td>
</tr>
<tr>
<td></td>
<td>SSR Shallow Radar</td>
<td>1.7</td>
<td>16</td>
<td>>5.6</td>
<td>Nadir</td>
<td>ExoMars WISDOM, Rosetta CONSERT, AIM</td>
</tr>
<tr>
<td></td>
<td>Radio Science</td>
<td>n/a</td>
<td>n/a</td>
<td>9</td>
<td>n/a</td>
<td>Rosetta RSI</td>
</tr>
<tr>
<td>Material and composition</td>
<td>CAMS (+COUCH) Mass Spectrometer</td>
<td>6.44 (1.5)</td>
<td>14.03 (20)</td>
<td>CAMS: 7, CADS: 9, (COUCH: 6-9)</td>
<td>Nadir</td>
<td>Rosetta ROSINA, (Philae Ptolemy)</td>
</tr>
<tr>
<td></td>
<td>GIADA Dust detector</td>
<td>7.8</td>
<td>22</td>
<td>9</td>
<td>Nadir</td>
<td>Rosetta GIADA</td>
</tr>
<tr>
<td></td>
<td>COSIMA Dust composition</td>
<td>20</td>
<td>28</td>
<td>9</td>
<td>Nadir</td>
<td>Rosetta COSIMA</td>
</tr>
<tr>
<td></td>
<td>DIDIMA Combined dust inst.</td>
<td>23</td>
<td>27</td>
<td>5 - 6</td>
<td>Nadir</td>
<td>Rosetta GIADA and COSIMA</td>
</tr>
<tr>
<td>Plasma environment</td>
<td>MAG Magnetometer</td>
<td>0.25</td>
<td>1</td>
<td>Sensor: 9 Electronics: 5</td>
<td>None</td>
<td>CINEMA</td>
</tr>
<tr>
<td></td>
<td>ChAPS Plasma Package</td>
<td>0.65</td>
<td>1</td>
<td>5-6</td>
<td>Various</td>
<td>TechDemoSat, Solar Orbiter</td>
</tr>
</tbody>
</table>
Castalia Mission

Mission phases – 6-12 months at MBC

• 100km quasi-orbit:
 Long drifts near the comet, with orbit corrections to change direction

• 20km orbit
 – Survey & “parking” orbit
 – Terminator orbit is stable

• 5km hover
 – 3.5h control cycle, incl. 1.5h science mode with no contamination
 – Fully autonomous, with redundant failure detection and collision avoidance maneuver