On-board Orbit Determination for a Deep-Space CubeSat

Boris Segret
LESIA-ESEP, PSL / Paris Observatory, France

D.A.A, N.C.K.U., Taiwan : Tristan Mallet, Jordan Vannitsen, Jiun-Jih Miau
LESIA, PSL / Paris Observatory : Gary Quinsac
IMCCE, PSL / Paris Observatory : Daniel Hestroffer, Florent Deleflie
Orbit Determination in Birdy Technology

- Autonomous AOCS
 - Attitude Determination
 - Attitude Control
 - Orbit Determination
 - Orbit Control
 - ΔV computation
 - Trajectory correction maneuvers

(Quinsac et al., 2016)

(trajecory inspired by Dennis Tito for 2018)

(courtesy LPPT, European consortium for Liquid micro-Pulsed Plasma Thruster, FP7 funded, TRL 3 in 2015)

(ESA's AIM mission to Didymos in 2022)
1st Context: Birdy in Deep-Space Cruise

Study Case = Earth-Mars-Earth free return trajectory

- Mission Preparation
- Deployment after IOI
- Earth-to-Mars
- Mars Flyby: First Datalink
- Mars-to-Earth = Earth-to-Mars
- End of Mission: Final Datalink

Science mode:
for instance autonomous Space Weather Probe

(trajecotory inspired by Dennis Tito for 2018)
2nd Context: Birdy in “Flying-legs”

Study case = released in situ by Mothercraft

Ground Segment:
- Propagator with Models-in-the-loop
- Next Flying-legs to Mothercraft

Flight Segment
- TCM: set new V~1m/s (1 day)
- Science mode (1 day ~80km)
 - Echo/Doppler (multiple S/C)
 - Imaging surface features
 - Optical astrometry
- Navigation mode (OD+OC)
- S-band TT&C to Mothercraft
Orbit Determination: Accuracy?

Trajectory Solver / Ground Segment:
- Reference Trajectory stored on-board
- Expected directions of “foreground objects”

Location determination / Flight Segment:
- Star Tracker (ADS) + Object Tracker (ODS)
- Accuracy needed? Accuracy reached?

Models-in-the-loop:
- gravitational
- non-gravitational
- expected

(A. Porquet, IMCCE, 2014)
On-board Orbit Determination for a Deep-Space CubeSat

Orbit Determination: Accuracy?

Trajectory Solver / Ground Segment:
- Reference Trajectory stored on-board
- Expected directions of “foreground objects”

Location determination / Flight Segment:
- Star Tracker (ADS) + Object Tracker (ODS)
- Accuracy needed? Accuracy reached?

Models-in-the-loop:
- gravitational
- non-gravitational
- expected

(A.Porquet, IMCCE, 2014)
Simplified Approach

\[M \ast \tilde{X} - \bar{C} = \bar{0} \]
\[\chi^2(\tilde{X}) = \| M \ast \tilde{X} - \bar{C} \|^2 \]
\[\Rightarrow \min(\tilde{X} | \chi^2(\tilde{X})) ? \]

Assumption:

Constant Velocity
during \(N=4 \) measurements

=> 19 unknowns
=> 21 equations

1st simulation on Earth-Mars in 10/2015 without optical errors, validations in 03/2016

(T. Mallet, DAA/NCKU, 2015)

On-board Orbit Determination for a Deep-Space CubeSat

without simplified approach

optical errors, validations in 03/2016

\[\chi^2(\tilde{X}) = \| M \ast \tilde{X} - \bar{C} \|^2 \]

1st simulation on Earth-Mars in 10/2015 without optical errors, validations in 03/2016

(T. Mallet, DAA/NCKU, 2015)
Method for Monte-Carlo simulations

Multidimensional Minimizing:
(a) “Steepest Descent” algorithm
 preferred for on-board software
 not implemented yet
(b) or “Random search on a grid”
 may be an alternative, not implemented yet
(c) or MATLAB / OCTAVE “INV([C])”
 likely not for on-board software
 implemented here for MC simulations

\[
\begin{align*}
M \cdot \vec{X} - \vec{C} &= \vec{0} \\
\chi^2(\vec{X}) &= \| M \cdot \vec{X} - \vec{C} \|^2 \\
\Rightarrow \min(\vec{X} | \chi^2(\vec{X})) &= \min(\vec{X} | \| M \cdot \vec{X} - \vec{C} \|^2)
\end{align*}
\]

(a) steepest descent along $\nabla \chi^2(\vec{X})$
(b) random search while evaluating $\nabla \chi^2(\vec{X})$
(c) new 19x19 linear system
\[
\nabla \chi^2(\vec{X}) = 0 \Leftrightarrow [C].\vec{X} = \vec{Y} \Leftrightarrow \vec{X} = [C]^{-1}.\vec{Y}
\]

\[
\vec{X} = \begin{pmatrix}
\delta(x) \\
\delta(y) \\
\delta(z) \\
\delta r_{j=1,4}
\end{pmatrix}
\]

“i” measurements
\(i=1..4\) for 19 unknowns

“j” foreground bodies
4 from N foreground bodies
Earth-to-Mars “E2M”: initial results...

If +1m/s is applied on Y-axis at jettisoning wrt Reference Trajectory “T_0” ➔ do we correctly reconstruct the expected shift wrt T_0?
Monte-Carlo series to estimate the mean reconstructed value <X>=f(σ_{in})

\[\text{accuracy measurement } \sigma_{in} \ll 1 \text{ arcsec} \]
Earth-to-Mars “E2M”: … and limits

If +1m/s is applied on Y-axis at jettisoning wrt Reference Trajectory “T₀”
→ do we correctly reconstruct the expected shift wrt T₀?

Monte-Carlo series to estimate the mean reconstructed value <X>=f(σ_{in})

accuracy measurement σ_{in} = 1 arcsec
Earth-to-Mars “E2M”: … and limits

If +1m/s is applied on Y-axis at jettisoning wrt Reference Trajectory “T₀” ➔ do we correctly reconstruct the expected shift wrt T₀?
Monte-Carlo series to estimate the mean reconstructed value <X>=f(σ_{in})

accuracy measurement σ_{in} = 15 arcsec
Elementary dynamic model “Y+1kY”
Elementary dynamic model “Y+1kY”

Rectilinear trajectory of CubeSat at 30km/s along 3 AU with 4 fictional “foreground Bodies”
"Y+1kY" dispersions even at small σ_{in}

The actual shift is small and constant (1000km) => assumption of "small shift" is not involved (Taylor dev. at 1st order)
Numeric degeneracy is likely involved, due to small angular variations with large distances (begin & end).

$\sigma_{in} = 0 (!)$
“Y+1kY” dispersions even at small σ_{in}

$\sigma_{in} = 10^{-5}$ arcsec (!)

σ_{out} on dY *and* dVy, dVx!

σ_{out} larger at large distances, on dV as well
"Y+1kY" dispersions even at small σ_{in}

$\sigma_{in} = 10^{-3}$ arcsec (!)

σ_{out} on dY *and* dVy, dVx!

σ_{out} larger at large distances, on dV as well
“Y+1kY” dispersions even at small σ_{in}

$\sigma_{in} = 0.1$ arcsec

σ_{out} on dY and dV, dV_x.

σ_{out} larger at large distances, on dV as well.
Realistic model “E2M” with small σ_{in}

$\sigma_{in} = 0.1 \text{ arcsec}$
and
$\sigma_{in} = 1 \text{ arcsec}$
"E2M" dispersions at small σ_{in}

+1m/s on Y: the actual shift wrt T0 is larger over time => assumption of "small shift" not valid in late scenario @ $\sigma_{in} = 0.1$ arcsec => Mean value ~10km accurate (wrt a few 1000s km expected) in transverse or longitudinal directions

$\sigma_{in} = 0.1$ arcsec
“E2M” dispersions at small σ_{in}

+1 m/s on Y: the actual shift wrt T0 is larger over time => assumption of “small shift” not valid in late scenario
@ $\sigma_{in} = 1$ arcsec => Mean value ~100km accurate (wrt a few 1000s km expected) in transverse or longitudinal directions

$\sigma_{in} = 1$ arcsec

Transversal shift

Longitudinal shift
“E2M”: \(<\delta x, \delta y, \delta z>\) at small \(\sigma_{in}\)

\[\sigma_{in} = 0.1 \text{ arcsec}\]

\[\Rightarrow \sigma_{out} \approx 300 \text{ m (X,Z)} \ldots 500 \text{ m (Y)}\]

better results in the middle of the cruise?
“E2M”: \(<\delta x, \delta y, \delta z> \) at small \(\sigma_{in} \)

\[
\sigma_{in} = 1 \text{ arcsec} \\
\Rightarrow \sigma_{out} > 2 \text{km (Y)} \ldots 4 \text{km (X,Z)} !!!
\]

Mean value could be acceptable but it cannot be trusted due to \(\sigma_{out} \).
"E2M": $<\delta r>_{\text{foreground bodies}}$ at small σ_{in}

$\sigma_{\text{in}} = 0.1$ arcsec
$\Rightarrow \sigma_{\text{out}} \approx 500$ m

Distance shifts are moderate, then increase

σ_{out} few 100s of km
“E2M”: $<\delta r>$ foreground bodies at small σ_{in}

$\sigma_{in} = 1$ arcsec

$\Rightarrow \sigma_{out} \sim 500$ m

distance shifts are moderate, then increase
Velocities vary during On-board OD:
at least 1° in direction
and +/- 0.1 m/s in intensities

\[\langle \delta V_x, \delta V_y \rangle \text{ at small } \sigma_{in} \]

\[\sigma_{in} = 0.1 \text{ arcsec} \implies \sigma_{out} > 2 \ldots 5 \text{ m/s} \]

\[\sigma_{in} = 1 \text{ arcsec} \implies \sigma_{out} > 20 \ldots 50 \text{ m/s (!!)} \]
Temporary assessments

• Lessons from “Y+1kY” fictional model
 ➢ Some dispersion with $0 \sigma_{\text{in}} \rightarrow$ Numeric degeneracy (INV function)
 ➢ σ_{out} vs. σ_{in} is very sensitive, optical accuracy is the 1st driver
 ➢ “close” foreground bodies is the 2nd driver for the overall accuracy
 ➢ Shifts $10^2..10^3$km vs. $10^{-5}..10^{-6}$km/s \rightarrow dimensionless approach

• Lessons from “E2M” realistic model
 ➢ The sensitivity seems to be well explained through “Y+1kY”
 ➢ Periods in the cruise seem more favorable to run the on-board OD
 ➢ Uniform velocity during OD is \textit{not} any realistic assumption
 ➢ (direction of the Sun was not considered)
Conclusion: We've got a roadmap!

- Study about On-board Orbit Determination is still in progress: need to improve by 2-3 orders of magnitude
 - on-board “Steepest descent” algorithm
 - non-uniform velocity, N=5 measurements needed
 - select the N “best” observables

- The required accuracy depends on the “TCM” potential

- A software-bench is functional to quantify the error propagation

- Need to adapt and assess in the “asteroid” context

- Anticipate an Extended Kalman Filter:
 - The right physical model? (sampled, analytical, ...)
 - Set-up of the noise co-variance matrices? (process noise, measurement noise)

BIRDY Technology is also a student project: More than 54 students have participated from 2014 in France and in Taiwan

Involved actors (chronological order, number in brackets = institution)

- Students to date (05/2016): J.Vannitsen(8), A.Ansart(15,8), Q.Tahan(15,8), M.Agnan(10,8), J.Velardo(10,3), A.Deligny(10,3), G.Quinsac(11,10,3), A.Porquet(10,3,7), A.Lassissi(10,3), N.Gerbal(15), O.Sleimi(14,8), S.Durand(10,3,4), R.Klajzynger(18), J.Diby(18,10,3), T.Mallet(18,8), J.Foissofa(18), L.Orsatto(18), E.Colin(18), N.Heim(18), J.Lin(8,10,3), A.Tsai(8), A.Chen(8), J.Tsai(8), T.Chang(8), D.Boisseau(15,8), A.Sibue(11), J.Evens(11), A.Schnitzer(10,3), S.Thibault(10,3), H.Poincelin(10,3), S.Delaire(20), I.Berber(20), T.Charay(20), A.Nirello(20), A.Sabir(20), M.Bougadouha(20), F.Le-coz(20), M.Gonzalez(20), M.Romero-Lopez(20), D.Gonzalez(20), I.Ouattara(8), K.Chun(8), F.Rizzitelli(8), E.Fournier-Bidoz(20), S.Wohlgemuth(20), F.Orstdius(20), C.Shen(18), J.Franel(18), T.Guidez(18), S.Sueur(18), A.v.Wesemael(18), B.Kalidas(18), R.Sabrekov(18), N.Traore(10,3,4).

- Supervisors, experts and sponsors: B.Segret(4,9,3,1), B.Mosser(4,10,11), K.Wang (8), J.C.Juang (8), J.J.Miau (8), C.Koppel (16,17), J.Daniel (1), Y.Desplanques (18), D.LePicart (18), P.Boutin (20), F.Deleflie (7,3,6,12,13), M.Cabane (5,12), M.Dudek (12), K.L.Klein (4), N.Vilmer (4), R.Heidmann (1), P.Brisson (1,2), D.Coscia (5), G.Cimò (19).