Astrodynamics of Interplanetary Cubesats

F. Topputo
Politecnico di Milano, Italy

© 2016 F. Topputo, Politecnico di Milano. All rights reserved.
Outline

- Interplanetary trajectory design
 - Conventional spacecraft
 - Cubesats
- Main challenges
- Case study: Cubesat mission to Mars
- Proposed strategy
 - Ballistic capture
 - Dual propulsion
- Critical analysis
Interplanetary trajectory design for standard spacecraft

Aim: To find the best path for a conventional spacecraft
 ▶ Fuel-optimal, time-optimal, energy-optimal, etc.

Manoeuvres accomplished through on-board propulsion
 ▶ Small errors in the nominal trajectory zeroed with TCM
 ▶ 6 DoF control usually available (RCS)

Control authority is not an issue
 ▶ S/C designed to cope with off-nominal conditions, unless catastrophic events occur
 ▶ S/C over-actuated
Aim: To find the best solution under much tighter constraints
 - Power generated
 - Propellant stored
 - Thrust exerted

Interplanetary cubesats have much less control authority
 - Capability of executing orbital manoeuvres strongly limited

These features set new challenges in astrodynamics
 - **Arrival**: How to acquire a final, closed orbit about a planet?
 - **Cruise**: How to accomplish the interplanetary transfer?
 - **Departure**: How to leave the Earth?
Case study: Cubesat mission to Mars

Devised strategy involves

- Arrival: Performing **ballistic capture** upon Mars arrival
- Cruise: Using **on-board micro-propulsion**
- Departure: Using **hybrid propulsion** to leave the Earth

Case study: A cubesat mission to Mars
Ballistic capture (in a nutshell)

A massless particle is (temporarily) ballistically captured by a primary if (along the orbit) its Kepler energy (H) goes from positive to negative

- The two-body state changes from hyperbolic to elliptic
- Requires n-body dynamics, with $n \geq 3$
- Permanent capture require dissipation
- The opposite behavior is the ballistic escape

![Graph showing temporary ballistic capture](image)

Temporary ballistic capture

Graph showing orbital dynamics

- Planet
- $H = 0$
- t_1, t_2
Why ballistic capture

- Saves **propellant**
 - Reduces hyperbolic excess velocity upon arrival
 - Lowers the magnitude of arrival maneuver, or \(\Delta v \)
 - Thus saving propellant, \(\frac{m_p}{m_0} = 1 - \exp\left[-\Delta v/(I_{sp} g_0)\right] \)

- Widens the **launch windows**
 - Target is a point in the space, not the planet

- Increases **safety**
 - Avoids single-point injection failures
Why ballistic capture

- **Saves propellant**
 - Reduces hyperbolic excess velocity upon arrival
 - Lowers the magnitude of arrival maneuver, or Δv
 - Thus saving propellant, $m_p/m_0 = 1 - \exp[-\Delta v/(I_{sp} g_0)]$

- **Widens the launch windows**
 - Target is a point in the space, not the planet

- **Increases safety**
 - Avoids single-point injection failures
Why ballistic capture

- **Saves propellant**
 - Reduces hyperbolic excess velocity upon arrival
 - Lowers the magnitude of arrival maneuver, or Δv
 - Thus saving propellant, $m_p/m_0 = 1 - \exp[-\Delta v/(I_{sp} g_0)]$

- **Widens the launch windows**
 - Target is a point in the space, not the planet

- **Increases safety**
 - Avoids single-point injection failures
Why ballistic capture

- **Saves propellant**
 - Reduces hyperbolic excess velocity upon arrival
 - Lowers the magnitude of arrival maneuver, or Δv
 - Thus saving propellant, $\frac{m_p}{m_0} = 1 - \exp[-\Delta v / (I_{sp} g_0)]$

- **Widens the launch windows**
 - Target is a point in the space, not the planet

- **Increases safety**
 - Avoids single-point injection failures
Why ballistic capture

- **Saves propellant**
 - Reduces hyperbolic excess velocity upon arrival
 - Lowers the magnitude of arrival maneuver, or Δv
 - Thus saving propellant, $m_p/m_0 = 1 - \exp[-\Delta v/(I_{sp} g_0)]$

- **Widens the launch windows**
 - Target is a point in the space, not the planet

- **Increases safety**
 - Avoids single-point injection failures

\[v_{\text{m}}/v_{\text{p}} = 1 - \exp[-\Delta v/(I_{sp} g_0)] \]
Why ballistic capture

- **Saves propellant**
 - Reduces hyperbolic excess velocity upon arrival
 - Lowers the magnitude of arrival maneuver, or Δv
 - Thus saving propellant, $\frac{m_p}{m_0} = 1 - \exp[-\Delta v/(I_{sp} g_0)]$

- **Widens the launch windows**
 - Target is a point in the space, not the planet

- **Increases safety**
 - Avoids single-point injection failures

Hyperbolic arrival

Low-energy arrival
Ballistic capture at Mars

- High altitude Mars orbits easily accessible
- Cheaper than Hohmann transfer(s)
- No manoeuvre at arrival needed!

<table>
<thead>
<tr>
<th>Point</th>
<th>r_P (km)</th>
<th>ΔV_c (km)</th>
<th>ΔV_2 (km/s)</th>
<th>S (%)</th>
<th>$\Delta t_{c \rightarrow p}$ (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>49896</td>
<td>2.033</td>
<td>2.116</td>
<td>-4.0%</td>
<td>434</td>
</tr>
<tr>
<td>(B)</td>
<td>73896</td>
<td>2.036</td>
<td>2.267</td>
<td>-11.3%</td>
<td>433</td>
</tr>
<tr>
<td>(C)</td>
<td>91897</td>
<td>2.039</td>
<td>2.344</td>
<td>-14.9%</td>
<td>432</td>
</tr>
<tr>
<td>(D)</td>
<td>113897</td>
<td>2.041</td>
<td>2.414</td>
<td>-18.2%</td>
<td>431</td>
</tr>
</tbody>
</table>
Ballistic capture in the news

- Topputo & Belbruno, arXiv, 2015
- Topputo & Belbruno, CMDA, 2015
Reaching Mars with micro propulsion

Aim: target a point in the deep space, x_c, to ensure capture using on-board Ion Propulsion

- **Assumptions:** $m_0 = 12$ kg, S/C in parabolic state wrt Earth
 - $T(AU) = 11.312e^{-2.262*AU}$ [mN]
 - $Isp(AU) = 3887.2*AU^2 - 13842*AU + 13445$ [s]
- $TOF = 1179$ days (3.2 years), $mp = 2.79$ kg (mass at Mars = 9.21 kg)
Escaping the Earth

- Cubesats likely launched as **piggy back** payloads
- No control on launch date
- Released in **low-altitude** (LEO, GTO) Earth-bounded orbit
- Escaping with on-board propulsion may be cumbersome
 - **Long duration** needed to escape
 - Pointing, operations, costs, etc. strongly affected
 - **Much radiation** dose accumulate
 - Solar arrays, shielding, etc. strongly affected

Images taken from http://space.stackexchange.com
Dual propulsion idea

Both chemical and low-thrust propulsion on-board the system

How it works:

- S/C launched as piggy back in LEO
- Earth escape achieved with chemical, impulsive burn
 - Short duration, less radiation
- Masses involve in chemical propulsion are thrown away
 - Dual-staged S/C, interfaces, complexity
- Cruise accomplished with on-board low-thrust propulsion

- Concept proven in ESA study in 2012
- Implemented by Lisa Pathfinder (for other reasons)
Cubesat achieves escape with its own chemical propulsion system

Cubesat performs Earth-Mars transfer with its own low-thrust propulsion

Upon arrival, ballistic capture is performed (and low-altitude orbit achieved)
Wrap up and conclusions

- Cubesats have been used successfully for Earth observation/communication.
- Wandering in the solar system with extremely low-resources space systems (cubesats) raises a set of completely new challenges in astrodynamics.
- Ideas have been presented to attempt answering these new questions.
- These include:
 - Performing ballistic capture.
 - Having a dual propulsion system.
- More in-depth analyses needed …