NanoSwarm: CubeSats Enabling a Discovery Class Mission

Jordi Puig-Suari
Roland Coelho
Tyvak Nano-Satellite Systems
NanoSwarm Mission Objectives

- Detailed investigation of Particles and Magnetic Fields to characterize the surface of airless planetary bodies
 - Specific target: Lunar Swirls (surface magnetic anomalies)
- Goals
 - Understand mechanisms of space weathering
 - Understand near-surface water formation and distribution on airless bodies
 - Understand how small bodies have generated dynamos and magnetized their crusts
 - Investigate the physics of particle-field interactions at the smallest scales
- Measurements:
 - Near-surface solar wind flux measurements across swirls
 - Near-surface magnetic field structure at a diverse set of lunar magnetic anomalies
 - Polar neutrons

Lunar Prospector magnetic field contours from 0 to 30 nT
NanoSwarm Mission Challenges

- **Measurements at very low altitudes**
 - Below 5Km
- **High measurement density**
- **Multiple Locations**
 - Several near-surface swirls
 - Polar Areas for Neutrons
- **Different solar illumination conditions**
 - Lunar day (28 earth days)
Solution Concept

- **Large number of “disposable” Lunar impactors**
 - Multiple locations & multiple times
 - Very low altitude measurements
 - Low-cost CubeSat based
 - Direct data dump to Earth

- **Problems**
 - Large ΔV requirements to reach Moon and target impacts
 - Potential long duration mission to satisfy different illumination requirements
 - Launch opportunities
 - Volume and mass constraints

- **Solution:** Proven spacecraft to carry probes to the Moon
Space Vehicle Concept

• **LCROSS based carrier**
 – Low-Cost spacecraft
 – Flight Proven
 – Large ΔV Capability (>1km/s)
 – Standard ESPA accommodations
 • 32 3U CubeSats (2x16)

• **Carrier Roles**
 – Inject into Lunar orbit
 – Deploy CubeSats at appropriate times
 – Support CubeSats: Thermal, Trickle Charge, Diagnostics

• **Benefits to CubeSats**
 – Low ΔV requirements
 • Impactor 50m/s – Orbiter 100m/s
 – Short mission duration
 • Impactor 11days – Orbiter 3months
 – Single launch for all mission requirements
CubeSats

• Simple Design
 – VACCO Hybrid propulsion (ΔV & Attitude Control)
 – JPL IRIS deep space transponder (Navigation & Data Download)
 – Tyvak Endeavor based avionics (C&DH and Attitude determination)

• Instruments
 – Nano-Solar Wind Ion Sensor (NanoSWIS) – UC Berkley
 – Nano-Magnetometer (NanoMAG) - UCLA
 – Nano-neutron Spectrometer (NanoNS) – APL

• 3 CubeSat types
 – Day Impactor (Qty. 15 + 2 spares)
 • NanoSWIS + NanoMAG
 – Night Impactor (Qty. 10)
 • NanoMAG
 – Neutron Orbiter (Qty. 2 + 1 spare)
 • NanoNS
CubeSats Internal Configuration

• Day Impactor

- Tyvak Main Board
- Star Tracker
- IMU
- Batteries
- Propulsion Unit
- Structure
- Boom
- Wind Instrument
- Magnetometer Boards
- Magnetometer Sensors
- IRIS Radio

Tyvak
A Sunny World Corporation
Mission Concept Observations

• Collaboration Between Traditional Spacecraft & CubeSats
 – Key Enabler for Discovery class mission
 – Traditional spacecraft reliability is critical for carrier
• Carrier reduces CubeSats requirements & complexity
 – Shorter mission timeline
 • Environmental exposure
 • Propulsive Attitude control
 – Lower ΔV
 • Low complexity propulsion system
• Science measurements require extremely low altitude & multiple measurements
 – “Disposable” impactor is ideal sensor
 – Low-cost CubeSats provide measurement multiplicity & redundancy
• COTS based CubeSats provide low recurrent cost
 – Large numbers of identical CubeSats are “very affordable”
• Most required technologies available in CubeSat form factor
 – IRIS radio, Propulsion system, Avionics, Instruments, Deployers, . . .
Conclusions

- CubeSats can play at Discovery mission level
- Dangerous measurements ➔ low-cost disposable sensors
- Low-cost spacecraft can provide large measurement numbers
- Collaboration with traditional spacecraft creates new opportunities
- Science community must identify appropriate problems