Ultra-Compact Ka-Band Parabolic Deployable Antenna (KaPDA) for Cubesats

Jonathan Sauder
05/28/14
The KaPDA Team

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Mark Thomson</td>
<td>355</td>
</tr>
<tr>
<td>Co-I</td>
<td>Tim Barrett</td>
<td>USC/ISI</td>
</tr>
<tr>
<td>Co-I</td>
<td>Richard Hodges</td>
<td>337</td>
</tr>
<tr>
<td>Co-I</td>
<td>Pezhman Zarifian</td>
<td>312</td>
</tr>
<tr>
<td>CogE</td>
<td>Jonathan Sauder</td>
<td>355</td>
</tr>
<tr>
<td>RF Analysis</td>
<td>Yahya Rahmat-Samii</td>
<td>UCLA</td>
</tr>
<tr>
<td>RF Analysis</td>
<td>Nacer Chahat</td>
<td>337</td>
</tr>
</tbody>
</table>
KaPDA Overview

- **Challenge** – Data rates are a limiting factor on CubeSat missions beyond LEO
- **Objective** – High-rate CubeSat communications with DSN
 - Over 100x increase over state-of-the art data rate requires a Ka-band deployable high-gain antenna (HGA)
 - Would provide over a 10,000x increase over a X-band patch antenna
- **Solution** – A low-cost deployable HGA stowing in ~1.5U

Data Rate Comparison

<table>
<thead>
<tr>
<th>Range (AU)</th>
<th>Data Rate (bps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>100,000,000</td>
</tr>
<tr>
<td>0.01</td>
<td>10,000,000</td>
</tr>
<tr>
<td>0.1</td>
<td>1,000,000</td>
</tr>
<tr>
<td>1</td>
<td>100,000</td>
</tr>
</tbody>
</table>

- Ka-band, 1w, deployable dish
- S-band, 1w, deployable dish
- X-band, 1w, patch antenna

Aeneas Parabolic Deployable Antenna (APDA) on-orbit
Existing CubeSat Antennas

• Existing parabolic and parabolic like antennas
 – Goer-wrap composite reflector
 – Reflector transformed from the CubeSat body
 – Inflatable cone/cylinder shaped reflector
 – Reflectarray
 – Mesh Antennas

• All are designed for S-band operation
 – Except for reflectarray

• Ka-band provides data rate advantages
 – But requires greater surface accuracy

• Mesh design was the most practical to upgrade
Approach

- ANEAS parabolic deployable antenna (APDA) launched in Sept. 2012
- Folding rib architecture was attractive for stowing efficiency
- Redesign the 0.5 m S-band APDA
 - JPL is collaborated with USC/ISI to test APDA and develop KaPDA
 - Surface characterization of APDA revealed a complete redesign would be required for Ka-band operation
- Design requirements
 - 42 dBi goal at 34 GHz for downlink to DSN
 - Equals 50% efficiency or surface distortions of under 0.57 mm RMS
 - Stows within 1.5U, and deploys with adequate mesh tension

APDA Hardware: Deployed and Stowed
Antenna Configuration

- Configurations were explored for stowed size and gain
 - Gregorian
 - Cassegrainian
 - Hat-style feeds
- Cassegrainian configuration was selected

<table>
<thead>
<tr>
<th>Configuration type</th>
<th>Gain, dBi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gregorian</td>
<td>44.0</td>
</tr>
<tr>
<td>Cassegrainian</td>
<td>43.6</td>
</tr>
<tr>
<td>Hat feed 1</td>
<td>43.1</td>
</tr>
<tr>
<td>Hat feed 2</td>
<td>43.3</td>
</tr>
</tbody>
</table>
General Architecture

- Antenna configuration drove architecture
 - Cassegrainian design was improved for gain
- Similar folding rib geometry to APDA
 - Required additional sub-reflector, horn, and waveguide

Key KaPDA Components

- Sub-reflector
- Latch
- Tip Rib
- Root Rib
- Horn
- Cable Plate
- Hub
- Waveguide Outlet

KaPDA Stowed

KaPDA Deployed
• Surface accuracy improves with more ribs
• Clearance space decreases with the number of ribs
• A balance between RF and clearance was found at 30-32 ribs
• A number of hinge designs were explored
 – Single pin hinge
 – Laminated hinge
 – SOSS hinge
 – Double hinge
 – Composite hinge
• Hybrid of single pin and laminated hinge will be used
• Stop opposite to the hinge pin controls deployment
Deployment Design

- Deploy arms via cables and springs
- 30 lbs of deployment force required to tension mesh
- Key Challenge: apply 30 lbs without whiplash
- Considered deployment drivers
 - Motors driving threaded rods
 - Scissors lift
 - Cables and pulleys driven by motors
 - Inflating bladder
- Inflating bladder system chosen
 - Controlled deployment
 - Only 4.7 psi required to deploy antenna

Spring and Cable Deployment

Original Cable Only Deployment
Deployment Design

- **Deployment Sequence**

 A. **Stowed Condition**

 B. **Hub is driven upwards by an inflating bladder**

 C. **Mechanical stop prevents the cable plate from traveling any further, deploying ribs. Ribs release sub-reflector, and as tips clear, they spring open.**

 D. **The hub continues upwards until the root ribs have fully deployed and hub is latched in place.**
KaPDA Parameters and Progress

- **Parameters:**
 - 0.5 meter dish stowing within 1.5U
 - RF analysis shows 42.9 dB of gain before manufacturing tolerances
 - Operations frequencies of 34.2 GHz to 34.7 GHz and 31.8 GHz to 32.3 GHz
 - Goal to operate at 37.5 GHz

- **Progress:**
 - Conceptual design has been completed
 - Initial RF and structural analysis completed
 - Next Steps
 - Detail RF tolerance analysis
 - Deployment breadboard
 - Engineering Model
 - RF verification of engineering model
 - Current R&TD through FY16; hope to accelerate
 - Deliverable is test-validated flight-like antenna

<table>
<thead>
<tr>
<th>Diameter (m)</th>
<th>Design</th>
<th>Stretch Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td></td>
<td>0.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency (GHz)</th>
<th>Design</th>
<th>Stretch Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td></td>
<td>37.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gain (dBi)</th>
<th>Design</th>
<th>Stretch Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td></td>
<td>46.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Efficiency (%)</th>
<th>Design</th>
<th>Stretch Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size (U)</th>
<th>Design</th>
<th>Stretch Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td></td>
<td>2.5</td>
</tr>
</tbody>
</table>

Table of Design Parameters
KaPDA stands to enable opportunities for a host of new Cubesat missions by allowing high data rate communication which would allow using high fidelity instruments or venturing further into deep space, including interplanetary missions.