1st Interplanetary Cubesat Workshop
MIT Cambridge, MA

ULA Rideshare CubeSat Missions for Lunar & Inter-Planetary Exploration

Jake Szatkowski
gerard.p.szatkowski@ULAlaunch.com
May 29-30, 2012
ULA's family of expendable launch vehicles has a long history of providing high-value payload accommodations for a variety of customer spacecraft & missions throughout the solar system.

ULA PLANETARY MISSIONS (Since 2001)

<table>
<thead>
<tr>
<th>Mission</th>
<th>Vehicle</th>
<th>Launch Date</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mars Odyssey</td>
<td>Delta II 7925</td>
<td>4/7/2001</td>
<td>Mars</td>
</tr>
<tr>
<td>CONTOUR</td>
<td>Delta II 7425</td>
<td>7/3/2002</td>
<td>Comet</td>
</tr>
<tr>
<td>Mars Rover A (Spirit)</td>
<td>Delta II 7925</td>
<td>6/10/2003</td>
<td>Mars</td>
</tr>
<tr>
<td>Mars Rover B (Opportunity)</td>
<td>Delta II 7925H</td>
<td>7/7/2003</td>
<td>Mars</td>
</tr>
<tr>
<td>MESSENGER</td>
<td>Delta II 7925H</td>
<td>8/3/2004</td>
<td>Mercury</td>
</tr>
<tr>
<td>Deep Impact</td>
<td>Delta II 7925</td>
<td>1/12/2005</td>
<td>Comet</td>
</tr>
<tr>
<td>Mars Reconnaissance Orbiter</td>
<td>Atlas V 401</td>
<td>8/12/2005</td>
<td>Mars</td>
</tr>
<tr>
<td>New Horizons</td>
<td>Atlas V 551</td>
<td>1/19/2006</td>
<td>Pluto</td>
</tr>
<tr>
<td>STEREO</td>
<td>Delta II 7925</td>
<td>10/25/2006</td>
<td>Sun (Earth orbit)</td>
</tr>
<tr>
<td>Phoenix</td>
<td>Delta II 7925</td>
<td>8/4/2007</td>
<td>Mars</td>
</tr>
<tr>
<td>Dawn</td>
<td>Delta II 7925H</td>
<td>9/27/2007</td>
<td>Asteroid Belt</td>
</tr>
<tr>
<td>Lunar Reconnaissance Orbiter</td>
<td>Atlas V 401</td>
<td>6/18/2009</td>
<td>Moon</td>
</tr>
</tbody>
</table>

These missions were launched as primary payloads and used the full capability of the launch vehicle, but there are lower-cost alternatives for achieving these science objectives.
Rideshare Concept

- **What is Rideshare?**
 - Sharing available performance and volume margin that would otherwise go unused by the primary payload

- **Advantages to Rideshare**
 - Provides an inexpensive and reliable solution
 - Cost-savings allows more funding to be applied to the science mission
 - Rideshare payload receives the benefits of full-up launch service

- **Successfully demonstrated in 2009, with LCROSS was flown as a secondary payload on an Atlas V that launched the LRO**

- **Difficulties:**
 - 1. ownership of the mission margin
 - 2. ULA reluctance to have more than a single contract per mission
Rideshare Spectrum of Capabilities

A range of capabilities address differing size, mass, and other requirements and provide individual operational advantages.

- **P-Pod**: Poly PicoSat Orbital Deployer
 - Size: 10 kg
 - Features: R&D Development, Dynamically Insignificant, First flight ILC 2011

- **ABC**: Aft Bulkhead Carrier
 - Size: 80 kg
 - Features: Releasable in LEO, Isolated from Primary S/C, First flight ILC 2010

- **CAP**: C-Adapter Platform
 - Size: 100 kg
 - Features: 2-4 Slots per Launch, Less obtrusive than ESPA, First flight Fist Flight 2010

- **ESPA**: EELV Secondary P/L Adapter
 - Size: 200 kg/ea.
 - Features: ESPA Way Fwd Progress, STP-1 Flew 2007, First flight Fist Flight 2010

- **IPC / A-Deck**: Integrated Payload Carrier
 - Size: 500 kg
 - Features: Mix and Match H/W Internal and External P/L, SP to 60 in. diameter, Last flight LRO/LCROSS, First flight ILC 2010

- **DSS**: Dual Satellite System
 - Size: 5000 kg
 - Features: All Flight Proven H/W, Sp to 100 in diam., CDR 4Q 2009 ILC 2011

Delivering a Wide Range of Small Spacecraft with the Appropriate Conops and Technical Accommodations

1 ESPA Graphic courtesy of CSA Engineering, Inc
2 COTSAT courtesy of NASA/AMES
3 NPSCuL courtesy of NPS
4 A-Deck courtesy of Adaptive Launch Solutions
ULA Rideshare Capability Overview

<table>
<thead>
<tr>
<th>CAPABILITY</th>
<th>MAXIMUM MASS PER PAYLOAD</th>
<th>VOLUME</th>
<th>INTERFACE</th>
<th>MAXIMUM # / LAUNCH</th>
<th>COMPATIBILITY</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta II Second-Stage Mini-Skirt</td>
<td>1.0 kg (2.2 lb)</td>
<td>10 cm³ (4 in³)</td>
<td>P-POD</td>
<td>6 Cubesats</td>
<td>X</td>
<td>ILC 2011</td>
</tr>
<tr>
<td>Delta IV Equipment Shelf</td>
<td>1.0 kg (2.2 lb)</td>
<td>10 cm³ (4 in³)</td>
<td>P-POD (NPSCuL)</td>
<td>24 Cubesats</td>
<td>x</td>
<td>Concept Development</td>
</tr>
<tr>
<td>ULA EELV P-POD</td>
<td>1.0 kg (2.2 lb)</td>
<td>10 cm³ (4 in³)</td>
<td>P-POD</td>
<td>24 Cubesats</td>
<td>x x</td>
<td>Concept Development</td>
</tr>
<tr>
<td>CAP (C-Adapter Platform)</td>
<td>45 kg (100 lb)</td>
<td>23 cm x 31 cm x 33 cm (9 in x 12 in x 13 in)</td>
<td>15” clampband</td>
<td>4</td>
<td>x x</td>
<td>ILC 2012</td>
</tr>
<tr>
<td>ABC (Aft Bulkhead Carrier)</td>
<td>77 kg (170 lb)</td>
<td>51 cm x 51 x 76 cm (20 in x 20 in x 30 in)</td>
<td>15” clampband or P-POD</td>
<td>1</td>
<td>x</td>
<td>ILC 2012</td>
</tr>
<tr>
<td>A-DECK (Auxiliary Payload Deck)</td>
<td>905 kg (2,000 lb)</td>
<td>152-cm dia. (60-in dia.)</td>
<td>15”, 23”, 37” clampband</td>
<td>1</td>
<td>x x</td>
<td>ILC 2012</td>
</tr>
<tr>
<td>ESPA (EELV Secondary Payload Adapter)</td>
<td>180 kg (400 lb)</td>
<td>61 cm x 71 cm x 96 cm (24 in x 28 in x 38 in)</td>
<td>15” bolted</td>
<td>6</td>
<td>x x</td>
<td>Operational</td>
</tr>
<tr>
<td>IPC (Integrated Payload Carrier)</td>
<td>910 kg (2,000 lb)</td>
<td>137-cm dia. (54-in dia.)</td>
<td>8”, 15”, 37” clampband</td>
<td>1</td>
<td>x x</td>
<td>Operational</td>
</tr>
<tr>
<td>XPC (External Payload Carrier)</td>
<td>1,590 kg (3,500 lb)</td>
<td>20.1 m³ (710 ft³)</td>
<td>60” diameter</td>
<td>1</td>
<td>x</td>
<td>PDR 12/2010</td>
</tr>
<tr>
<td>DSS-4M (Dual Spacecraft System - 4M)</td>
<td>2,270 kg (5,000 lb)</td>
<td>254-cm dia. x 127 cm (100-in dia. x 50 in)</td>
<td>37” clampband</td>
<td>1</td>
<td>x x</td>
<td>ILC 2012</td>
</tr>
<tr>
<td>DSS-5M (Dual Spacecraft System - 5M)</td>
<td>5,000 kg (11,000 lb)</td>
<td>4-m dia. x 6.1 m (13.1-ft dia. x 20 ft)</td>
<td>62” bolted</td>
<td>1</td>
<td>x x</td>
<td>Concept Development</td>
</tr>
</tbody>
</table>
Aft Bulkhead Carrier (ABC)

- **Description**
 - I/F located at the aft-end of the Atlas V Centaur second-stage

- **Capabilities**
 - Mass: **80 kg**
 - Volume: 51 cm x 51 cm x 76 cm (20 in x 20 in x 30 in)
 - Interface: 15-in clampband or P-POD dispenser
 - Capacity: 1 slot
 - Vehicle: Atlas V

- **Status**
 - First fight 2012
 - ABC Users Guide available 9/12

- **Why?**
 - Sep from primary – release any time, no contamination, no re-contact, no security
OUTSat Mission on L-36

- Integration onto Atlas completed
- Launch date Aug 2, 2012 (first-flight)
- Next flight, pending L-39

Photos courtesy Maj. Wilcox NRO/OSL
Integrated Payload Carrier (IPC)

- **Description**
 - A flexible *stack of ring segments*
 - Config: *conic adapter or A-Deck*

- **Capabilities**
 - Mass: 910 kg (2,000 lb)
 - Volume: 137-cm dia. (54-in dia.)
 - Vehicle: Atlas V, Delta IV

- **Status**
 - IPC is operational

- **Why?**
 - Large volume
 - on centerline
 - treated as single SC
 - height up to 7 ft
A-Deck Structure

- **Structural Component Approach**
 - Monolithic Aluminum Design
 - Spider Pattern Centered Drilled
 - CNC Machined
 - Designed for 1000 kg Load Bearing Capability
 - Mil Spec Drilling for Fasteners

* Slide courtesy of Lt Col Guy Mathewson. NRO and Adaptive Launch Solutions
A-Deck Structural Testing

A-Deck arrives at NTS Test Facility

A-Deck carried to EDA 330

A-Deck lowered in EDA 330

Mass Simulator on A-Deck

A-Deck Suspended in Acoustic Test Chamber

* Slide courtesy of Lt Col Guy Mathewson. NRO and Adaptive Launch Solutions
What does it mean for Interplanetary Missions?

- Some of our missions (particularly polar ones) do Earth-escape disposal of the upper stage
- Some of the missions have fairly large margins
- It is possible to raise the apogee to beyond L1 for a separation
- The primary will dictate the time of launch and the moon can be anywhere in its orbit.
- However, if a Lunar exploration s/c could loiter long enough it could sync with and be captured by Lunar gravity

Options:
- ABC can support 80 kg s/c
- ESPA can support (6) 200 kg s/c
- A-Deck can support up to 2000 kg s/c
MULE (Multi-payload Utility Lite Electric)
Third Stage

- MULE stage provides high deltaV to perform delivery of ESPA class payloads to a variety of orbits and Earth Escape missions
 - Delivery to Earth Escape (Lunar, NEO, Mars)
 - Delivery of a constellation (3 or 4 ESPA S/C)
 - Delivery to GSO
 - High delta-V
 - Solar Electric propulsion
 - Based on the ESPA Ring
 - On-orbit operations multi-yr

- Co-sponsors:
 - Comtech AeroAstro (Avionics)
 - Busek Space Propulsion (Hall Thrusters)
 - Adaptive Launch Solutions (S/C Integration)

- Status – proposal development
MULE Stage Conops

- **Lunar Mission concept**
 - Atlas prime-S/C separation & CCAM
 - Atlas disposal to high-apogee or Earth-escape & MULE separation
 - MULE transfer orbit to high-apogee for Lunar capture
 - MULE deploys ESPA S/C, CCAM / disposal

- **Mars Mission concept**
 - Atlas prime-S/C separation & CCAM
 - Atlas disposal to high-apogee or Earth-escape & MULE separation
 - MULE deploys high-gain antenna from 4\(^{th}\) ESPA slot
 - MULE transfer orbit to Earth escape, Mars intercept trajectory
 - Transfer orbit for Mars capture
 - Lowers Mars orbit for S/C delivery
 - Positioning of constellation into Mars orbits
 - (3) TDRSS-lite, or (24) 3-U GPS-lite S/C
 - MULE moves to areostationary orbit to continual data relay to Earth using high-gain antenna
Potential Rideshare Opportunities

- All potential mission opportunities will need to be:
 - Assessed for technical compatibility
 - Coordinated and approved by the primary payload customer

<table>
<thead>
<tr>
<th>Mission</th>
<th>Customer</th>
<th>Vehicle</th>
<th>Site</th>
<th>Orbit</th>
<th>Margin, Excluding Disposal (kg)</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS-IIF</td>
<td>USAF</td>
<td>401</td>
<td>ER</td>
<td>MEO - Direct</td>
<td>~600</td>
<td>IIF-4, IIF-6</td>
<td>IIF-7, IIF-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPS-III</td>
<td>USAF</td>
<td>411</td>
<td>ER</td>
<td>MTO</td>
<td>[~1100]</td>
<td>IIIA-2</td>
<td>IIIA-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBIRS</td>
<td>USAF</td>
<td>401</td>
<td>ER</td>
<td>GTO</td>
<td>~100</td>
<td>GEO-3</td>
<td>GEO-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFSPC</td>
<td>USAF</td>
<td>401</td>
<td>ER</td>
<td>GTO</td>
<td>TBD</td>
<td>AFSPC-8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRO</td>
<td>NRO</td>
<td>411</td>
<td>ER</td>
<td>GTO</td>
<td>TBD</td>
<td>L-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AEHF</td>
<td>USAF</td>
<td>531</td>
<td>ER</td>
<td>GTO</td>
<td>Performance Limited</td>
<td>AEHF-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUOS</td>
<td>USAF</td>
<td>551</td>
<td>ER</td>
<td>GTO</td>
<td>Performance Limited</td>
<td>MUOS-4</td>
<td>MUOS-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOES</td>
<td>NASA</td>
<td>541</td>
<td>ER</td>
<td>GTO</td>
<td>Performance Limited</td>
<td>GOES-R</td>
<td>GOES-S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDRS</td>
<td>NASA</td>
<td>401</td>
<td>ER</td>
<td>GTO</td>
<td>Performance Limited</td>
<td>TDRS-M</td>
<td>TDRS-N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMS</td>
<td>NASA</td>
<td>421</td>
<td>ER</td>
<td>GTO</td>
<td>Performance Limited</td>
<td>MMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discovery</td>
<td>NASA</td>
<td>401</td>
<td>ER</td>
<td>Hyperbolic</td>
<td>TBD</td>
<td>D-12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ExoMars</td>
<td>NASA</td>
<td>421</td>
<td>ER</td>
<td>Hyperbolic</td>
<td>Performance Limited</td>
<td>EM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osiris Rex</td>
<td>NASA</td>
<td>401</td>
<td>ER</td>
<td>Hyperbolic</td>
<td>Performance Limited</td>
<td>OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europa</td>
<td>NASA</td>
<td>551</td>
<td>ER</td>
<td>Hyperbolic</td>
<td>Performance Limited</td>
<td>EO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar Orbiter</td>
<td>NASA</td>
<td>551</td>
<td>ER</td>
<td>Hyperbolic</td>
<td>Performance Limited</td>
<td>SO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRO</td>
<td>NRO</td>
<td>541</td>
<td>WR</td>
<td>TBD</td>
<td>Performance Limited</td>
<td>L-67</td>
<td>L-42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRO</td>
<td>NRO</td>
<td>401</td>
<td>WR</td>
<td>TBD</td>
<td>TBD</td>
<td>L-55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STP</td>
<td>USAF</td>
<td>401</td>
<td>WR</td>
<td>~700km 98 deg</td>
<td>>5,000</td>
<td>STP-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLARREO</td>
<td>NASA</td>
<td>[Delta II]</td>
<td>WR</td>
<td>~600 km Polar</td>
<td>TBD</td>
<td>CLARREO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICESat</td>
<td>NOAA</td>
<td>[Delta II]</td>
<td>WR</td>
<td>Polar</td>
<td>TBD</td>
<td>ICESat-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMSP</td>
<td>USAF</td>
<td>401</td>
<td>WR</td>
<td>~800km 99 deg</td>
<td>>4,000</td>
<td>DMSP-19/DSX</td>
<td>DMSP-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JPSS</td>
<td>NOAA</td>
<td>[Delta II]</td>
<td>WR</td>
<td>~800km 98deg</td>
<td>~900</td>
<td>JPSS-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GeoEye</td>
<td>GeoEye</td>
<td>401</td>
<td>WR</td>
<td>~700km 98 deg</td>
<td>>4,000</td>
<td>GEOEYE-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WorldView</td>
<td>Digital Globe</td>
<td>401</td>
<td>WR</td>
<td>~700km 98 deg</td>
<td>>4,000</td>
<td>WV-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comm I-9</td>
<td>CLS</td>
<td>401</td>
<td>WR</td>
<td>TBD</td>
<td>>4,000</td>
<td>Comm I-9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transfer orbits missions
Earth escape trajectories
LEO Missions Disposal TBD
Summary

- ULA does not broker rideshares with primary customers
- ULA can give you a POC for specific applications that may work
- ULA can suggest ways to approach selected primary customers for rideshare
- You are responsible for:
 - design rqts (SMC/STP - ESPA Rideshare users guide),
 - required gates for success (i.e. Range Safety)
 - way to perform the integration