Simulating Delay Tolerant Networking (DTN) for CubeSats

Interplanetary CubeSat Workshop
Cambridge, Massachusetts
May 29th, 2012

Paul Muri
Janise McNair

Wireless and Mobile Systems (WAMS) Lab

NASA Space Technology Research Fellowships (NSTRF)
Agenda

- Motivation for Networking CubeSats
- DTN on CubeSats
- What is the DTN Simulation Platform?
 - Video screencast of the running simulation
- Simulation Architecture
- Results and Conclusions
Why Network CubeSats?

- Take advantage of launching in clusters
 - More connections with ground stations
- Limited Power
 - Transmit data “hop-by-hop” to:
 - Other CubeSats
 - Larger higher power relay satellite
 - Earth’s moon is 384,000 km away
 - Mars is 55-400 million miles away
- Limited Computing
 - Use distributed computing techniques presented later

Credit: NASA JPL The Interplanetary Internet (IPN)
Why Network CubeSats?

Next-generation communication protocol concepts for future nanosatellite constellations

Patrick Romano *, Manuela Unterberger, Otto Koudelka

Institute of Communication Networks and Satellite Communications, Graz University of Technology, Inffeldgasse 12/1, 8010 Graz, Austria

Why DTN on CubeSats?

Why DTN on CubeSats?

DTN Space Space Missions

Summer 2005
Deep Impact NETwork experiment
Range: 20 million miles
Uplink data rate: 2 Kbps
Avg downlink data rate ~165 Kbps

Summer 2008
UK-DMC (Disaster Monitoring Constellation) Images UDP/IP using Cisco router in Low Earth Orbit (CLEO)

July 2009
International Space Station Testing Bio-processing Apparatus (CGBA)

Source: http://www.nasa.gov/mission_pages/station/research/experiments/DTN.html
Why DTN on CubeSats?

DTN Space Space Missions

Spring 2011
EO-1: Tested The Consultative Committee for Space Data Systems (CCSDS) File Delivery Protocol (CFTP)

Diagram Credit: DTN over Internet Router In Space (IRIS) Test Report
June 30, 2011 Faith Davis(GSFC), Jane Marquart(GSFC), Greg Menke(Columbus Technologies), Stephen Leslie(GSFC), Leor Bleier (GSFC)
DTN Simulation

Topologies Created

- Sun-Synchronous Repeating Ground Track
- Flower Constellation
- Free-flying cluster
Real-time Simulation Interface
(video)
DTN Simulation

System Architecture

- Entire testbed can be one host machine
- NS-3 simulates the physical and link layer channels
 - Input mobility patterns, transmission power, 802.11 DCF parameters
 - Models delays, transmission rates, errors, packet loss with detailed scheduling
- DTN implementations are installed on Virtual Machines, Linux Containers (LXCs), or laptops/smart phones
 - DTN2, ION, IBR-DTN, JDTN, Bytewalla, N4C
- Connections are bridged through the Linux host routing sub-system
 - Uses the brctl function

Diagram:

[Diagram showing the system architecture with various components like VirtualBox, Host OS, DTN2, Virtual Hardware, Input mobility patterns, etc.]
Bridging Connections

- Each vm on the host has a virtual Ethernet (veth)
 - Host allocates a unique IP for each veth

- Host also maintains tap interface
 - Monitors traffic flow between node non-obtrusively
 - Uses the tunctl command

- NS-3 connects networking devices to an internal channel.

- While running the simulation, the network status of each LXC or virtual machine can be view in real-time
 - Uses the netstat command
DTN Simulation

Link Budget

Friis Equation

\[P_{rx} = G_{tx} + G_{rx} - 20 \log \left(\frac{4\pi \times d}{\lambda} \right) + P_{tx} \]

\[= 10 dB + 10 dB - 20 \log \left(\frac{4\pi \times 2,000 \text{km}}{.125 m} \right) + 30 dB \]

\[= -116 dB \]

Node Transmission Range Parameters Table

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambda = Wavelength</td>
<td>.125 meters</td>
</tr>
<tr>
<td>Grx = Rx Antenna Gain</td>
<td>10 dB</td>
</tr>
<tr>
<td>Gtx = Tx Antenna Gain</td>
<td>10 dB</td>
</tr>
<tr>
<td>Ptx = Power Transmitted</td>
<td>30 dBm</td>
</tr>
<tr>
<td>d = Transmission Distance</td>
<td>2,000 Km</td>
</tr>
<tr>
<td>Prx = Power Received</td>
<td>-116 dBm</td>
</tr>
</tbody>
</table>
Network Parameters

- Standard slot time for 802.11g-2007 is 20ms.
- For 2,000 km, 6 ms is needed for one way propagation.
- Slot time of 15 ms was a total of propagation, clear channel assessment (CCA), turnaround, and processing.
- Distributed Coordination Function (DCF) Inter-frame Spaces (DIFS) and SIFS were set from the slot time:
 - Wi-Fi and Carrier sense multiple access (CSMA) models were used.
- Routing Protocols: static, prophet, and flood (flood used for current simulation).

\[
\text{SlotTime} = \text{Air Propagation} + \text{CCA} + \text{Turnaround} + \text{Mac Processing}
\]

\[
\begin{align*}
\text{DIFS} &= \frac{5}{2} \times \text{SlotTime} \\
\text{SIFS} &= \frac{1}{2} \times \text{SlotTime}
\end{align*}
\]
DTN Simulation

Results

- Tested Wi-Fi physical channel on CSMA
 - Applications included dtnping, dtnsend, and dtnrecv
 - Proves the platform can model DTN network connectivity
- Test bed output of virtual machine are transparent to IP packets
 - Users can parse packet capture data through a network sniffer such as WireShark
- Nodes of 50 meters starting distance have an average datarate of 755.84 Kbps
- Nodes with range of 2000 km 10.44 Kbps
- Comparing to an earlier study, a UDP/IP network of nodes at distances of 2000 km had a data rate of 80 bps
Website

www.wam.ece.ufl.edu/sat/

pmuri@ufl.edu